Prof. Dr. Michael Müller

 

Mitochondria- and metabolism-derived signaling are equally important for the dynamic responsiveness of neuronal networks, synaptic plasticity and single-cell function. Disturbed signaling and mitochondrial dysfunction are considered as the underlying causes of a variety of neurodevelopmental and neurodegenerative diseases.

We analyze such mitochondria- and metabolism derived signaling in functionally intact hippocampal/ medullary preparations of rats and mice by combining classic electrophysiological approaches with high-resolution and multiphoton microscopy and the use of advanced optical sensors. In the center of our research interest are the following topics:

  • Intracellular strategic positioning and functional heterogeneity of mitochondria.
  • Modulation of organelle interactions via mitochondria-derived signaling (ROS, NOS, Ca2+, ATP).
  • Intracellular signaling function of ROS and redox changes in complex neuronal networks.
  • Defined redox modulation of cellular proteins (ion channels, receptors, regulatory and structural proteins) by changes in mitochondrial metabolism.
  • Mitochondrial dysfunction and redox imbalance in Rett syndrome.
  • Responses of complex neuronal networks to metabolic compromise

 

Group Members:

Prof. Dr. Michael Müller, Group Leader
Dr. Katharina Dietrich, PostDoc
Karolina Can, Ph.D. Student
Jonathan Weller, Ph.D. Student
Belinda Kempkes, Technical Assistant

 

– click here for external homepage –